为 Docker Compose 服务启用 GPU 访问
如果 Docker 主机包含 GPU 设备且 Docker 守护进程已相应配置,则 Compose 服务可以定义 GPU 设备预留。为此,请确保您已安装 先决条件,如果尚未安装的话。
以下部分中的示例专门关注如何通过 Docker Compose 为服务容器提供 GPU 设备访问权限。
为服务容器启用 GPU 访问
在需要 GPU 的服务中,GPUs 在 compose.yaml 文件中通过 Compose Deploy 规范中的
device 属性进行引用。
这提供了对 GPU 预留更精细的控制,因为可以为以下设备属性设置自定义值:
capabilities。此值指定为字符串列表。例如,capabilities: [gpu]。您必须在 Compose 文件中设置此字段,否则在服务部署时会返回错误。count。指定为整数或值all,表示应预留的 GPU 设备数量(前提是主机拥有该数量的 GPU)。如果count设置为all或未指定,默认使用主机上所有可用的 GPU。device_ids。此值指定为字符串列表,表示主机上的 GPU 设备 ID。您可以在主机上运行nvidia-smi的输出中找到设备 ID。如果未设置device_ids,默认使用主机上所有可用的 GPU。driver。指定为字符串,例如driver: 'nvidia'options。表示驱动特定选项的键值对。
Important您必须设置
capabilities字段。否则,在服务部署时会返回错误。
Note
count和device_ids是互斥的。您一次只能定义其中一个字段。
有关这些属性的更多信息,请参阅 Compose Deploy 规范。
为服务容器提供 1 个 GPU 设备访问权限的 Compose 文件示例
services:
test:
image: nvidia/cuda:12.9.0-base-ubuntu22.04
command: nvidia-smi
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]使用 Docker Compose 运行:
$ docker compose up
Creating network "gpu_default" with the default driver
Creating gpu_test_1 ... done
Attaching to gpu_test_1
test_1 | +-----------------------------------------------------------------------------+
test_1 | | NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.1 |
test_1 | |-------------------------------+----------------------+----------------------+
test_1 | | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
test_1 | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
test_1 | | | | MIG M. |
test_1 | |===============================+======================+======================|
test_1 | | 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
test_1 | | N/A 23C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
test_1 | | | | N/A |
test_1 | +-------------------------------+----------------------+----------------------+
test_1 |
test_1 | +-----------------------------------------------------------------------------+
test_1 | | Processes: |
test_1 | | GPU GI CI PID Type Process name GPU Memory |
test_1 | | ID ID Usage |
test_1 | |=============================================================================|
test_1 | | No running processes found |
test_1 | +-----------------------------------------------------------------------------+
gpu_test_1 exited with code 0
在托管多个 GPU 的机器上,可以设置 device_ids 字段以针对特定的 GPU 设备,count 可用于限制分配给服务容器的 GPU 设备数量。
您可以在每个服务定义中使用 count 或 device_ids。如果您尝试同时使用两者、指定无效的设备 ID,或使用超出系统中 GPU 数量的 count 值,将返回错误。
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1B.0 Off | 0 |
| N/A 72C P8 12W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla T4 On | 00000000:00:1C.0 Off | 0 |
| N/A 67C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 Tesla T4 On | 00000000:00:1D.0 Off | 0 |
| N/A 74C P8 12W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 62C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
访问特定设备
仅允许访问 GPU-0 和 GPU-3 设备:
services:
test:
image: tensorflow/tensorflow:latest-gpu
command: python -c "import tensorflow as tf;tf.test.gpu_device_name()"
deploy:
resources:
reservations:
devices:
- driver: nvidia
device_ids: ['0', '3']
capabilities: [gpu]